赛迪发布《2021年5G发展展望白皮书》
333
2024-02-11
中国是一个制造大国,每天都要生产大量的工业产品。用户和生产企业对产品质量和外观缺陷检测的要求越来越高,除要求满足使用性能外,还要有良好的外观,即良好的表面质量。但是,在制造产品的过程中,表面缺陷的产生往往是不可避免的。
不同产品的表面缺陷有着不同的定义和类型,一般而言表面缺陷是产品表面局部物理或化学性质不均匀的区域,如金属表面的划痕、斑点、孔洞,纸张表面的色差、压痕,玻璃等非金属表面的夹杂、破损、污点,等等。表面缺陷不仅影响产品的美观和舒适度,而且一般也会对其使用性能带来不良影响,所以生产企业对产品的表面缺陷检测非常重视,以便及时发现,从而有效控制产品质量,还可以根据检测结果分析生产工艺中存在的某些问题,从而杜绝或减少缺陷品的产生,同时防止潜在的贸易纠份,维护企业荣誉。
人工检测是产品表面缺陷的传统检测方法,该方法抽检率低、准确性不高、实时性差、效率低、劳动强度大、受人工经验和主观因素的影响大,而基于机器视觉的检测方法可以很大程度上克服上述弊端。
美国机器人工业协会(RIA)对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”。
机器视觉是一种无接触、无损伤的自动外观缺陷检测技术,是实现设备自动化、智能化和精密控制的有效手段,具有安全可靠、光谱响应范围宽、可在恶劣环境下长时间工作和生产效率高等突出优点。机器视觉检测系统通过适当的光源和图像传感器(CCD摄像机)获取产品的表面图像,利用相应的图像处理算法提取图像的特征信息,然后根据特征信息进行表面缺陷的定位、识别、分级等判别和统计、存储、查询等操作;
视觉表面缺陷检测系统基本组成主要包括图像获取模块、图像处理模块、图像分析模块、数据管理及人机接口模块。
图像获取模块由CCD摄像机、光学镜头、光源及其夹持装置等组成,其功能是完成产品表面图像的采集。在光源的照明下,通过光学镜头将产品表面成像于相机传感器上,光信号先转换成电信号,进而转换成计算机能处理的数字信号。目前工业用相机主要基于CCD或CMOS(complementary metal oxide semiconductor)芯片的相机。CCD是目前机器视觉最为常用的图像传感器。
光源直接影响到图像的质量,其作用是克服环境光干扰,保证图像的稳定性,获得对比度尽可能高的图像。目前常用的光源有卤素灯、荧光灯和发光二级管(LED)。LED光源以体积小、功耗低、响应速度快、发光单色性好、可靠性高、光均匀稳定、易集成等优点获得了广泛的应用。
机器视觉自动外观缺陷检测是由光源构成的照明系统按其照射方法可分为明场照明与暗场照明、结构光照明与频闪光照明。明场与暗场主要描述相机与光源的位置关系,明场照明指相机直接接收光源在目标上的反射光,一般相机与光源异侧分布,这种方式便于安装;暗场照明指相机间接接收光源在目标上的散射光,一般相机与光源同侧分布,它的优点是能获得高对比度的图像。
结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的3维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
fqj
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。