传统算法融合深度学习,重新定义“工业视觉检测大脑”收藏

网友投稿 358 2024-01-15


机器视觉经过长时间的发展,技术不断取得重大突破并被广泛应用,当前已遍布工业生产的各个环节而且机器视觉易于实现自动化集成,软件集成,是实现智能制造的基础技术据统计,中国的机器视觉市场需求近几年处于持续高速增长阶段,年复合增长率保持在23%。

传统算法融合深度学习,重新定义“工业视觉检测大脑”收藏

截至2021年,国内机器视觉市场规模达163.8亿元目前,机器视觉在工业领域的应用主要包含定位、测量、识别、检测等方向随着制造业智能制造转型步伐加快,工业视觉在各个方向上的应用都面临着精度、速度与准确率要求越来越高的挑战。

这其中的部分问题随着硬件水平的提高得到了有效的解决,比如采集硬件的分辨率、传输带宽、运算效率方面,但是也有一部分问题,需要长周期的实践和迭代升级才有可能解决,其核心关键点在于深度学习技术的发展与应用深度学习技术会使工业视觉的应用边界得到极大地拓展,由原来只能在产品标准化、一致性极高的场景,变成几乎可以替代人眼进行任意场景下的视觉检测应用,而且不止是工业生产方面,在农业、民用等领域也可以取得良好的应用效果。

传统算法的实施效率高、消耗的算力和功耗少,这是深度学习无法比拟的优势但针对一些代表性的场景如特征明显但存在异物干扰的情况,使用传统算法唯一的问题是会造成一定程度的过杀,而深度学习可以解决这些传统算法无法解决的复杂场景问题。

因此,从项目实施的复杂性和成本角度考虑,传统算法和深度学习相结合是应该优先考虑的方案

多年的研发和一线实践,维视智造团队深谙传统算法与深度学习优势与边界,因此开创性地将传统算法融合深度学习,推出了面向工业4.0时代,加载深度学习技术的通用智能视觉开发平台VisionBank AI最新版本几乎可以完成任何行业内任何场景下的图像处理任务。

而且基于英特尔OpenVINO的硬件加速,可帮助制造业用户快速构建自己的深度学习解决方案,在简化开发流程、提高检测准确性的同时,可以有效为用户节省部署成本VisionBank AI具备四大核心优势一、应用简单。

VisionBank AI的操作界面清晰易懂,模块化、0代码、智能化、拖拉拽式的开发模式,操作简单,视觉应用搭建效率更高;二、稳定高效结构稳定、运行高效,VisionBank AI基于15年的研发和市场实践,已形成高度稳定的系统架构和成熟的模块化算法结构,软件稳定性更强。

同时流程与流程间、模块与模块间均支持并行运算,IO、PLC协议、图像存储等功能全部内置,可快速适配机器视觉其他软硬件部署;三、深入场景维视智造拥有20年的一线经验积累,涉足成千上万的视觉检测场景,形成VisionBank AI扎实全面的能力基因。

针对细分场景,则开发了大量专用算法模块,如弹簧检测、齿轮检测、管材检测、扇贝定位等;四、快速迭代随着新算法、新技术和创新应用的不断发展,VisionBank AI项目开发架构及系统架构可高效完成升级迭代,从而覆盖更广的场景问题。

VisionBank AI为补齐传统算法盲区,重点开发了3类深度学习专用工具:“特征智能分割”、“特征智能分类”和“智能定位”这三大工具将有效解决在机器视觉检测中,产品缺陷特征难识别、特征分割不稳定以及兴趣对象难以稳定定位的问题,为制造业更复杂的生产场景和更精细化的检测需求带来有效的解决方案。

VisionBank AI实现4项技术突破1、对平台算力要求降低,精简项目成本VisionBank AI在线推理的神经网络模型均基于OpenVINO进行了模型优化,优化后的模型,对算力平台的要求最高可降低16倍(不同类型的模型优化结果有差异)。

使得VisionBank AI的在线推理可全部基于CPU完成,降低GPU使用需求,从而优化企业的成本控制

优化后的神经网络模型检测“焊靶”缺陷,处理时间仅需24ms(基于CPU推理)2、训练数据量降低100倍创新的深度学习模块和传统缺陷检测算法深度融合,可以利用传统算法“过检”后的“图像块”来训练“缺陷过滤神经网络模型”,在利用对抗训练的准确性优势下,有效解决了“负样本”图像数据获取问题。

使用传统算法的“中间数据”训练网络模型3、新一代特征匹配算法,提速11倍最新开发的第四代“特征匹配算法”相对于第一代算法,匹配速度提升了11倍,支持以下异常特征匹配:特征被部分遮挡、特征大小有缩放、特征扭曲变形以及特征显示不全等。

匹配定位+线芯检测502个对象,总耗时103毫秒(500万像素)4、最新升级的架构模块,最多支持16台相机同时并行检测。一台处理器可以当16台处理器使用,在多相机协同工作场景,实现了有效的成本优化。

行业落地应用在光伏行业“引线焊接质量检测”项目中,检测的特征随机多样、干扰因素繁杂,维视智造使用VisionBank AI,部署了“传统算法+深度学习+深度学习”的三嵌套方案,最终使检测速度提升至2秒1板,并在“0漏检”的前提下,使“误检率”低至0.01%。

3C电子行业常见的手机后盖缺陷检测,检测产品缺陷不同特征之间形态差异大、部分缺陷不明显,打光难度大,但客户往往对检测精准度、速度要求高使用VisionBank AI特有的缺陷检测功能,即可将种类繁多、特征各异的缺陷实现高效识别,准确识别率大于99.99%。

汽车行业的汽车变速器料盒在线检测场景,通常使用机器视觉检测来料盘上的物料是否有漏放、错放、掉件等,其产品尺寸大、检测细节多、干扰多,弹簧间距不容易判断,以往的人工检测“误检”和“漏检”率高VisionBank AI的弹簧状态检测专用算法模块,使用特有的特征提取算法,可极大提高检测速度和准确率,使识别准确率高于99.9%。

除上述实践案例外,维视智造的VisionBank AI也已在锂电、汽车、半导体、 医疗与食品、教育等行业成功落地使用,为各行业的智能化升级,降本增效提供助力。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:盘点生活中处处可见的光电传感器“黑话”!收藏
下一篇:盘点工业场景里车牌识别的疑难杂症,助力工业厂区车辆出入管理收藏
相关文章

 发表评论

暂时没有评论,来抢沙发吧~