世界智能制造,探索智能技术引领下的制造业未来
272
2024-01-12
我国包装行业在经历了高速发展之后,已经建立起了相当的生产规模,成为了我国制造领域里重要的组成部分包装行业的快速发展不仅满足了国内消费和商品出口的需求,也在保护商品、方便物流、促进销售、服务消费等方面发挥了重要作用。
因此包装行业的安全问题显得尤为重要,如何在生产过程中快速进行缺陷检测确保包装安全是许多厂商关心的问题包装行业篇缺陷探测食品饮料和消费产品的包装常使用有光泽感的塑料或陶瓷材料,这些材料的表面常有反光和镜面眩光问题,传统机器视觉难以在产品表面反光和眩光的干扰下,成功有效的识别划痕和凹陷等外观缺陷。
幸运的是,锡明深度学习技术可以不受眩光影响而检测产品锡明深度学习技术能将人类观察细微差异的能力与自动化计算机系统的可靠、一致和速度相结合,为包装行业提供了有效的缺陷探测解决方案例如面霜的陶瓷瓶,有时瓶子间的固有差异导致的细微外观异常可能并不需要直接报废,而真正影响瓶子用途的“功能性”异常才会导致报废。
锡明深度学习技术以经济有效、易于部署的方式将机器视觉检测和人类检测的优势结合到了一起为此,应用或质量工程师可以使用一系列有代表性的“合格”和“不合格”陶瓷瓶图像训练深度学习软件例如“不合格”瓶子可能是有深凹陷或长划痕的。
软件根据这些图像学习陶瓷铸造表面的天然形状和表面纹理,可以忽略可能因光线造成的自然差异,同时标记出可接受范围之外的图像,完成有效的缺陷检测
在这种情况下,制造商可以使用锡明深度学习技术来识别偏离正常外观并有缺陷的所有对象对于需要识别某些导致报废的缺陷的同时忽略其他缺陷情况的复杂检测,训练工程师可以使用标记的“合格”和“不合格”图像训练参考模型,然后即可在忽略正常差异的情况下识别各种缺陷。
(文章来源于锡明机器视觉,如有侵权,请联系删文)
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~