世界智能制造,探索智能技术引领下的制造业未来
282
2023-10-31
IDC数据显示,到2021年,20%的领先制造企业将通过嵌入式智能、人工智能、物联网和区块链等技术实现流程自动化,并将执行时间缩短25%。
德勤表示,机器学习可以让离散制造业的产品质量提高35%麦肯锡指出,那些将在未来五到七年内拥抱人工智能的企业中,有半数企业的现金流将有望增加一倍,而制造业由于对数据的高依赖性所以将领跑于其他行业还有数据统计,到2020年,领先的制造企业中将有60%的企业借助数字化平台为其30%的业务收入提供支持有机构表示,48%的日本制造企业看到了将机器学习和数字制造技术整合到运营中可能带来的更多机会,这个结果高于麦肯锡最初研究的预期无论如何,对于制造企业来说,通过富有洞察的机器学习平台来提高产品质量和产量,提高工厂生产率,将成为下一步变革的关键。
具体来看,利用机器学习来简化生产的每个阶段——从入库供应商质量开始,一直到制造计划和订单完成——已经成为了制造业的一个优先事项。根据德勤最近的一项调查显示,机器学习将制造业的计划外停机时间减少了15-30%,生产量提高了20%,维护成本降低了30%,质量提高了35%。
据统计预测,人工智能将给全球企业的市场营销和销售创造1.4万亿美元到2.6万亿美元的价值,给供应链管理和制造创造1.2万亿到2万亿美元的价值。对此,麦肯锡也预测,基于人工智能的预测性维护可能会给制造企业带来0.5万亿美元到0.7万亿美元的价值。
麦肯锡提到,人工智能的海量数据处理能力(包括音频和视频),将帮助企业快速识别异常以防止故障的发生。而机器学习可以检测某个特定声音是来自在质量测试中正常运行的飞机发动机,还是装配线上即将发生故障的设备。
制造企业正在尝试通过使用云平台上的机器学习和预测分析让业务更具可持续性。比如,有部分制造企业就在使用Azure Symphony Industrial AI从模板库部署设备模型,这个模板库中包括热交换器、泵、压缩机以及制造企业常使用的其他资产。Symphony AI的Process 360 AI可以帮助用户创建流程的预测模型,其中,高级别流程将被定义为通过设备生产的物品(如化学品、燃料、金属、其他中间产品和成品),而工艺模板实例将包括氨工艺、乙烯工艺、LNG工艺和聚丙烯工艺。我们发现,流程模型有助于预测过程扰动和跳闸,而这是单独设备模型无法预测的。
波士顿咨询集团(BCG)发现,制造企业使用人工智能可以将生产商的转换成本降低多达20%,同时由于劳动力生产率提高,成本降低可能达到70%。BCG发现,生产商正在通过使用人工智能来开发和生产为客户量身定制的创新产品,并在更短交付周期内进行交付,从而创造额外的销售收入。
那些依赖重型资产的离散制造企业和流程制造企业正在利用人工智能和机器学习来提高吞吐量、改善能耗和利润。拥有重型设备(包括大型机械)的制造企业正在探索使用算法来提高产量、可持续性和良率。麦肯锡发现,人工智能可以自动执行某些复杂的任务,并提供一致性和精确的最佳设定点,让设备能够自动运行,这对于采取一班制或者多班制的自动化制造来说至关重要。
基于人工智能和机器学习的产品缺陷检测和质量保证能够将制造生产率提高到50%甚至更多。机器学习在发现产品及包装异常方面有天然的优势,在提高产品质量和防止次品流出方面同样有着巨大潜力。与人工检查相比,基于深度学习的系统能够将缺陷检出率提高达90%。
如今有不少可以使用的开源人工智能环境,再加上低成本的摄像头和强大的计算机,这一切让小型企业也能够越来越多地使用人工智能进行视觉检测。在使用人工智能进行视觉质量检查的过程中,从不同角度对良品和次品进行视觉成像来创建参考示例,将为学习算法训练监督提供强大的支持。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~