SAP智能制造,为企业带来的无限机遇
293
2024-04-01
随着近年来物联网、AI、5G 等新技术的应用,“智能制造”热度高居不下。但机遇往往与挑战并存。无论是研发设计环节的低效、生产管理环节的排期缺乏弹性、传统经营管理中存在的供应链管理刚性固化,还是传统运维存在无法实时反映设备运行态势、警告分析不够智能、警告根因难以确定等问题,都为工业双转型增加了障碍。
仔细观察这些难点不难看出,所涉及的问题分布在制造业的不同生产环节,要想实现制造业全生命周期的数字化,要落地到行业具体的应用场景,需要产业链上下游企业共同努力,包括设备提供商、软件开发者、系统集成商、服务提供商、终端用户等共同参与。
一般来说,智能制造生产环节分为:研发设计、生产管理、运营管理、运维服务四个阶段
首先,在研发设计环节,传统制造企业研发设计面临市场需求响应慢、团队内部沟通低效、产品设计与生产条件不匹配等问题。
其次,随着企业生产规模不断扩大、产品定制属性不断增强,传统生产模式引致的库存管理滞后、排期缺乏弹性、物料采购难以满足生产管控等问题逐渐成为企业发展的重重阻力,如何将数字化、智能化技术应用于企业生产管理,成为企业的“燃眉之急”。
以冶金行业为例,设备管理领域普遍存在着基础管理、点检管理、检修管理、备件管理等方面问题。
再到企业运营管理环节,当前客户需求多元化、定制化趋势愈加明显,传统经营管理中存在的供应链管理刚性固化、库存管理和订单管理缺乏弹性等问题,成为企业发展软性桎梏。如何在有限产能的背景下,灵活、快速满足客户个性化需求,提升企业经营管理效益,成为数字化转型背景下急需解决的问题。
而以电力行业为例,当前发展面临电量增长乏力、低效和无效投资、购电成本过高、资金使用浪费等诸多挑战。
通过支持各种类型的数据源和数据接入的方式,将数据接入系统后对数据进行充分地整理和归纳,并生成对应的数据业务模型。再基于先进的 AI 技术,例如文本解析、实体识别、语义理解、 图像识别,构筑一整套的语义分析与图像分析的底层引擎能力,并结合系统内置的行业知识图谱和 算法模型,提供智能问答、文档搜索、决策分析、数据预测等多项顶层功能。
对于工业企业而言,安全、稳定生产是底线,传统运维存在无法实时反映设备运行态势、警告分析不够智能、警告根因难以确定等问题,做到故障预先提示,实现设备的远程、快速诊断和维护,显得越来越有必要。
目前,国内电源结构仍将以火电为主,火电中则是以煤电为主。煤电机组在运行过程中,设备故障造成的非计划停运较多,给电力生产带来诸多不利影响,其中锅炉水冷壁磨损泄漏故障是造成机组非计划停运的重要原因。针对锅炉水冷壁磨损,目前采用的措施为定期停炉人工检测维修。但传统人工检测中存在以下问题:
第一,作业周期长,检测效率低。典型的电站锅炉炉膛高度可达 50-100m,传统的检测方式,费时费力。
第二,检测可靠性差。水冷壁磨损主要靠人工手持设备进行点检,受时间和人员精力所限,一般抽取代表点检测,经常出现漏检、误检。
第三,成本较高,易出事故。检测时工作人员高空作业,往往和炉内其他施工交叉进行,存在较大的安全隐患。
数字化如何实现制造业快速减碳?
从2020年做出“碳中和”、“碳达峰”的承诺之后,每年都有重磅政策出台。2021年,双碳工作被列为“十四五”开局之年的重点任务之一;2022年7月,工业和信息化部、发展改革委、财政部等六部门联合发布《工业能效提升行动计划》,将工业“减碳”的窗口期缩短到三年,要求2025年将节能提效作为工业减碳的首要举措。
随着“减碳”时间窗口期越来越短,碳排放重点行业通过数字化、智能化技术进行碳减排资源的优化配置,快速实现减碳的需求日渐凸显。
但是,目前在碳管理中面临不少难题:
首先,由于缺少碳管理专业知识和数字化工具,传统碳资产认证体系复杂,认证周期长,认证行业少,且只有纳入碳排放配额的企业才能参与,其他企业或个人主动参与度低,入手难。
其次,碳管理数据易造假篡改,利用可编辑监测报告模板篡改关键监测数据,从碳排放源头到碳减排,碳 排放报告质量控制缺失,重要原始数据缺乏真实性和准确性,容易造假和篡改,缺乏有效监管。
如何解决这些难题,其基于区块链技术,通过终端数据展示模块清晰呈现产品的绿色可持续属性,或者引入第三方服务进行全链路排放计算、碳足迹追溯,从根源减少供应端碳排放。
显然,在通往双碳的路上,数字技术将在支撑工业节能提效上,展现出巨大的潜力,也会成为目前“减碳”工作中十分具有亮点的一条技术路径。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~