机器视觉应用软件开发步骤及流程设计

网友投稿 480 2024-03-10


机器视觉工程应用主要可划分为硬件和软件两大部分。

机器视觉应用软件开发步骤及流程设计

硬件:工程应用的第一步就是硬件选型。硬件选型很关键,因为它是你后面工作的基础。主要是光源、工业相机和镜头选择。

软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块。

机器视觉工程应用的基本开发思路是:

一、图像采集,二、图像分割,三、形态学处理,四、特征提取,五、输出结果。

下面在Halcon下对这四个步骤进行讲解。

一、图像采集:

Halcon通过imageacquisition interfaces对各种图像采集卡及各种工业相机进行支持。其中包括:模拟视频信号,数字视频信号Camera Link,数字视频信号IEEE 1394,数字视频信号USB2.0,数字视频信号Gigabit Ethernet等。  Halcon通过统一的接口封装上述不同相机的image acquisition interfaces,从而达到算子统一化。不同的相机只需更改几个参数就可变更使用。

Halcon图像获取的思路:1、打开设备,获得该设备的句柄。2、调用采集算子,获取图像。

1、打开设备,获得该设备的句柄。

open_framegrabber(DahengCAM, 1, 1, 0, 0, 0, 0, interlaced, 8, gray, -1, false,HV-13xx, 1, 1, -1, AcqHandle) //连接相机,并设置相关参数

Parameter Values Default Type Description Name DahengCAM string Name of the HALCON interface. HorizontalResolution 1 1 1表示水平全部,2为水平1/2,表示图像截取。 VerticalResolution 1 1 同上,表示垂直方向。 ImageWidth 0 integer 所需的图像部分的宽度(0 代表了完整的图像)。 ImageHeight 0 integer 所需的图像部分的高度(0”是完整的图像) StartRow 0 integer 所需的图像部分左上方的像素行坐标 StartColumn 0 integer 所需的图像部分左上方的像素列坐标 Field 忽视 BitsPerChannel 忽视 ColorSpace default, gray, rgb gray string HALCON图像的通道模式 Generic 忽视 ExternalTrigger false, true false string 外部触发状态 CameraType HV-13xx, HV-20xx, HV-30xx, HV-31xx,HV-50xx, SV-xxxx HV-13xx string 所连接的摄像机系列型。 Device 1, 2, 3, ... 1 string 相机连接第一个设备号“1”,第二个设备编号“2”。 Port 忽视 LineIn 忽视

2、调用采集算子,获取图像。

grab_image (Image, AcqHandle) //(同步采集)完后处理图像,然后再采集图像。采集图像的速率受处理速度影响。 grab_image_async (Image, AcqHandle,MaxDelay) //(异步采集),一幅画面采集完后相机马上采集下一幅画面,不受处理速度影响。其中第三个参数为:MaxDelay,表示异步采集时可以允许的最大延时,本次采集命令距上次采集命令的时间不能超出MaxDelay,超出即重新采集。

图像采集其他相关算子:

grab_image_start,该算子开始命令相机进行异步采集。只能与grab_image_async(异步采集)一起使用。

例子:

* Select a suitable image acquisition interface nameAcqName open_framegrabber(AcqName,1,1,0,0,0,0,default,-1,default,-1.0, default,default,default,-1,-1,AcqHandle) grab_image(Image1,AcqHandle)//进行同步采集 * Start next grab grab_image_start(AcqHandle,-1.0)//命令相机进行异步图像采集开始 * Process Image1 ... * Finish asynchronous grab + start next grab grab_image_async(Image2,AcqHandle,-1.0)//读取异步采集的图像 * Process Image2 ... close_framegrabber(AcqHandle)

3、相机参数读写

读取相机参数:

info_framegrabber( : : Name, Query : Information, ValueList)

写相机参数:

set_framegrabber_param( : : AcqHandle, Param, Value : )

二、图像分割:

图像分割的定义: 

所谓图像分割是指将图像中具有特殊含义的不同区域分割开来,这些区域是互相不交叉的,每个区域都满足特定区域的一致性。

1、基于阈值的图像分割

threshold —采用全局阈值分割图像。

格式:    threshold(Image : Region : MinGray, MaxGray : )

自动全局阈值分割的方法:

(1)计算灰度直方图 

(2)寻找出现频率最多的灰度值(最大值) 

(3)在threshold中使用与最大值有一定距离的值作为阈值

代码:

gray_histo(Regions, Image,AbsoluteHisto, RelativeHisto) //计算出图像区域内的绝对和相对灰度值直方图。 PeakGray := sort_index(AbsoluteHisto)[255] //求出出现频率最多的灰度值 threshold(Image,Region,0,PeakGray-25)

bin_threshold — 使用一个自动确定的阈值分割图像。

格式:    bin_threshold(Image : Region : : )

dyn_threshold —使用一个局部阈值分割图像。

格式:    dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )

例子:

mean_image(Image,Mean,21,21) dyn_threshold(Image,Mean, RegionDynThresh,15,dark)

var_threshold —阈值图像局部均值和标准差的分析。

格式:    var_threshold(Image : Region : MaskWidth, MaskHeight, StdDevScale, AbsThreshold, LightDark : ) 

2、基于边缘的图像分割:寻找区域之间的边界

watersheds —从图像中提取分水岭和盆地。

格式:    watersheds(Image : Basins, Watersheds : : )

watersheds_threshold —使用阈值从图像中提取分水岭和盆地。

格式:    watersheds_threshold(Image : Basins : Threshold : )

3、基于区域的图像分割:直接创建区域

三、形态学处理

形态学处理以集合运算为基础。

腐蚀、膨胀、开操作、闭操作是所有形态学图像处理的基础。

开操作(先腐蚀再膨胀)使对象的轮廓变得光滑,断开狭窄的间断和消除细的突出物。

闭操作(先膨胀再腐蚀)消弥狭窄的间断和长细的鸿沟,消除小的孔洞,填补轮廓线的断裂。

形体学基础算子:

erosion1 

dilation1 

opening 

closing

常用的形态学相关算子 

connection 

select_shape 

opening_circle 

closing_circle 

opening_rectangle1 

closing_rectangle1 

complement 

difference 

intersection 

union1 

shaps_trans 

fill_up

形态学高级算子: 

boundary 

skeleton

四、特征提取:

1、区域特征:

area 

moments

smallest_rectangle1

smallest_circle

convexity:区域面积与凸包面积的比例

contlength:区域边界的长度

compactness

2、灰度特征

estimate_noise

select_gray

五、输出结果:

(1)获取满足条件的区域

(2)区域分类,比如OCR

(3)测量

(4)质量检测

编辑:黄飞

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:基于机器视觉技术的料堆三维体积测量
下一篇:机器视觉需要镜头的选择和分析和其优点
相关文章