SAP智能制造,为企业带来的无限机遇
278
2024-03-05
LED芯片是LED产业的最核心器件,芯片温度过高会严重影响 LED产品质量;但芯片及芯片内部的温度分布一直是检测难点,其主要的问题在于内部器件过小,特别是微米级别的金线(10微米左右),无法用传统的热电偶/热电阻检测;使用红外热像仪以及特殊配件可以对LED芯片内部进行检测,芯片内部的金线和正负电极温度分布状况可以为研发人员提供布线设计依据,以及为芯片研发散热系统也需要确认芯片各部位的发热情况,提高LED芯片质量。
但热像仪检测微米级别的LED金线和正负电极也是有一定难度的,常用配置的红外热像仪最小只能检测到0.2mm的目标,所以需要有特殊的配件进行检测。
一、红外热像仪使用标准镜头和广角镜头检测的效果
目标为3mm LED芯片,下面的热像图均为同一型号热像仪(Ti50)加装不同镜头拍摄:
标准镜头在150mm处拍摄(150mm为Ti50热像仪的最小聚焦距离)
换装广角镜头在10mm处拍摄
注:
1、最小聚焦距离:最小聚焦距离是红外镜头的重要参数,一般来说,距离越近,在相同条件下拍摄的清晰度就越好;但大部分的镜头时无法贴近检测的,与目标能离得多近就是最小聚焦距离。
2、目前大部分热像仪有红外和可见光双重拍摄模式,但因 LED芯片尺寸小,热像仪需要在最近的极限距离处拍摄,已远低于可见光最小聚焦距离,故可见光一般无法在热图中显示,或可见光与红外热图位置差异较大。
从热像图的效果来看,标准镜头和广角镜头均只能看到LED芯片表面的大致温度分布,而完全无法清楚地看到金线和正负电极等细节部分的温度分布,所以这两种配置并不能符合测试的要求。
二、使用微距镜头对LED芯片进行检测
热像仪换装13.5μm微距镜头在20mm处拍摄3mm 蓝光LED芯片现场图
LED芯片红外热图,可以见到宽度为10μm金线和正负电极
利用软件,在热像图的芯片范围设置一条直线(下图左),在下图右中可以看到这条线按照位置变化的温度变化曲线(横轴为像素坐标轴,纵轴为温度轴),在线上攻击250个像素,芯片尺寸为3mm,则在芯片上每个像素的尺寸为3mm/250=12μm,也就是说,热像仪可以分辨出直径为12微米的部件的细微温差。
-------------------
本文选自电子发烧友网11月《测试测量特刊》Change The World栏目,转载请注明出处! 市场态势、创意DIY、设计方案?一分钟即可快速获得!版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~