机器视觉应用场景有哪些

网友投稿 306 2024-02-08


机器视觉是人工智能正在快速发展的一个分支,目前中国已是继美国、日本之后的第三大机器视觉领域应用市场。本文将对机器视觉的应用进行简单盘点。

机器视觉应用场景有哪些

在这里,我们把机器视觉的功能分为检测、测量、识别、定位,并以此盘点机器视觉的应用。并在最后介绍一些目前较为火热的重点领域。

工业检测应用

在工业检测中利用机器视觉的非接触、速度快、精度合适、现场抗干扰能力强等突出的优点,使机器视觉技术得到了广泛的应用,取得了巨大的经济与社会效益。

在板材加工检测、玻璃基板表面检测、PCB表面检测、金属表面视觉检测、二极管基片检查、印刷电路板缺陷检查、焊缝缺陷自动识别等方面均得到了广泛应用。

在工业检测中采用机器视觉,可提高生产的柔性和自动化程度。一方面可以在一些危险工作环境或人工视觉难以满足要求的场合中采用机器视觉;另一方面,在大批量工业生产过程中,机器视觉检测可以大大提高生产效率和生产的智能化程度。

测量应用

主要用于测量零部件以及各类产品的尺寸否合格。除了利用工业相机进行二维的尺寸测量外,目前可利用结构光、3D TOF等技术实现三维尺寸测量。对产品的基本特征尺寸、装配效果、提供高精度监控。

视觉在测量上的应用,一方面减少了人力测量的需求,降低了人力成本;另一方面,视觉测量具有高精度的特性,误测误判的可能性极低。

图像识别

图像识别,简单讲就是使用机器视觉处理、分析和理解图像,识别各种各样的的对象和目标,功能非常强大。目前主要识别的内容有人、车辆等各类目标物。在工业领域对带有明确信息的标识,OCR、一维码、二维码等常有识别需求。

对明确信息的标识进行识别,有助于提高生产效率、降低生产成本。图像识别大多商用场景还属于蓝海,潜力有待开发。同时,图片数据大多被大型互联网企业所掌握,创业公司数据资源稀少。

定位应用

在工业应用中,利用机器视觉对部件或产品进行定位。这种定位应用多会辅助机器人或者其他执行机构以实现相关的动作。一般来说,定位可协助机器人实现喷漆、涂胶、抓取、焊接等动作。

机器视觉涉及的其他较为火热的领域

物体分拣

机器视觉应用环节中,物体分拣应用是建立在识别、检测之后的一个环节,通过机器视觉系统将图像进行处理,结合机械臂的使用实现产品分拣。

在过去的产线上,是用人工的方法将物料安放到注塑机里,再进行下一步工序。现在则是使用自动化设备分料,其中使用机器视觉系统进行产品图像抓取、图像分析、输出结果,再通过机器人把对应的物料放到固定的位置上,从而实现工业生产的智能化、现代化、自动化。

视频/监控分析

人工智能技术可以对结构化的人、车、物等视频内容信息进行快速检索、查询。这项应用使得让公安系统在繁杂的监控视频中搜寻到罪犯的有了可能。在大量人群流动的交通枢纽,该技术也被广泛用于人群分析、防控预警等。

食品包装与制药行业应用

机器视觉在食品包装领域适用范围广泛,可用于检测瓶子的分类和液位测量、标 签、盖子、盒子的检查,以及瓶的形状、尺寸、密封性和完整性。食品包装是食品质量的重要保障,可以保护食品在流通过程中免受污染,提高品质,避免发生安全事故。

机器视觉在药品包装、质量检测及控制等多个方面有广大作为,助力医药行业加 快现代化、智能化进程。目前,在数粒、打码、泡罩版缺粒、药品残缺和断片、 加装说明书、编码识别等检测环节,机器视觉检测内容丰富、稳定、精确,满足医药行业包装线经常变包装产品的需求。

图像及视频编辑

目前市场上也出现了很多运用及机器学习算法对图像进行处理,可以实现对图片的自动修复、美化、变换效果等操作。并且越来越受到用户青睐。

汽车制造行业

汽车制造质量原先主要依靠三坐标测量完成,效率低、时间长、数据量严重不足, 且只能离线测量。机器视觉引入非接触测量技术,逐步发展成固定式在线测量站 与机器人柔性在线测量站等在线测量系统,可严格监控车身尺寸波动,提供数据支持。

机器视觉检测系统可以对产品进行制造工艺检测、自动化跟踪、追溯与控制等,包括通过光学字符识别(OCR)技术获取车身零件编码以保证零件在整个制造过程中的可追溯性,通过识别零件的存在或缺失以保证部件装配的完整性,以及通过视觉技术识别产品表面缺陷或加工工具是否存在缺陷以保证生产质量。

消费电子行业

机器视觉在消费电子领域,以PCB/FPC AOI检测、零部件及整机外观检测、装配引导等应用为主,并呈现出越来越多的新的应用场景。

在电路板从印刷装置中移下,或在清洗剂中清洗后,以及返修完成返回生产线中,机器视觉提供的在线视觉技术可以在实施印刷操作后直接发现存在的缺陷情况,保证了操作者在加上PCB以前能够及时处理有关问题。另外,发现缺陷时可以有效防止有缺陷的电路板送达生产线后端,从而避免出现返修或废弃现象。操作者能够及时得到反馈,明确处于操作中的印刷工艺操作是否良好,达到预防缺陷产生的目的,对生产效率和良率的提升至关重要。

无人驾驶

随着汽车的普及,汽车已经成为人工智能技术非常大的应用投放方向,但就目前来说,想要完全实现自动驾驶/无人驾驶,距离技术成熟还有一段路要走。不过利用人工智能技术,汽车的驾驶辅助的功能及应用越来越多,这些应用多半是基于计算机视觉和图像处理技术来实现。

审核编辑:黄飞

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:AI在工业检测中的应用与发展,也对机器视觉行业产生重大影响
下一篇:AI场景的价值体现视觉AI技术落地实践
相关文章

 发表评论

暂时没有评论,来抢沙发吧~