SAP智能制造,为企业带来的无限机遇
446
2024-01-11
新产业周期下,新能源行业风口已至,现代社会对于新能源电池产品需求量加大,对产品的质量安全也更加重视当前,传统的检测方法已经不能满足新能源电池行业的发展,越来越多的厂商开始应用创新机器视觉技术与产品于生产环节,着重提升电池的出厂质量。
为更快、更好地助力新能源厂商提升电池品质,深眸科技创新研发的AI视觉检测系统,建立以深度学习为主的差异化优势,持续赋能电池外观自动化缺陷检测,实现企业更高质、高效生产,助力新能源行业规模化发展。
检测难度较高,视觉技术亟需升级随着新能源行业的爆发式增长,新能源电池等相关企业加速扩产但近几年来,新能源电池安全问题频发,越来越多的人逐渐重视电池的质量问题,相关厂家也加大了对其的缺陷检测力度,确保产品出厂的合格率。
检测难点铅酸电池:缺少统一的行业标准,缺陷界限模糊,没有明确的数据确定是否为不良品,导致漏检、错检的情况时有发生同时在生产过程中,还会不断产生新的缺陷,涉及到虚焊、脱焊、极群装反、极柱变形、汇流排折弯、极耳数量多等。
锂电池:锂电池的缺陷类型复杂多样,位置随机,而且一些细微瑕疵与背景颜色差异微乎其微,难以精确提取缺陷特征,其缺陷类型包括封装不良、破损、短路、腐蚀、电池芯内部含水量超标等这些缺陷存在严重影响新能源电池的质量与产品稳定性,严重甚至会造成爆炸的风险。
综上所述,依靠传统人工目测的检查方式,存在较高的误检、漏检风险而AI视觉检测系统的出现,不仅大幅提升检测的精度、速度以及准确度,还能适应在危险环境下的使用同时,随着新能源电池工艺的复杂化、原材料的加速迭代,对于机器视觉的要求也在逐渐提高,也为机器视觉厂家如何满足新能源电池行业的市场需求、加速适应新变化提出挑战,助推机器视觉技术的持续升级。
在整个新能源电池的生产过程中,虽然外观缺陷检测只占其生产的一小部分,但却是保证产品合格率的关键步骤,在整个生产过程中都起着至关重要的作用且随着3D视觉、AI算法等机器视觉相关技术的持续升级,AI视觉检测系统的性能优势进一步加大,充分实现对新能源电池缺陷的高效检出。
企业加速布局,新能源行业蓄势待发随着中国工业自动化技术水平的提高和经济飞速发展,机器视觉行业迎来发展新机遇,尤其是近年来智能制造浪潮的兴起,以及制造业自动化、智能化的转型升级,为机器视觉行业的快速发展创造了绝佳机会。
深眸科技深谙机遇与挑战并存之理,多年来通过相关行业案例的积累与沉淀,深度分析新能源电池行业客户的实际需求,并在该领域持续发力在电池缺陷检测项目中,深眸科技坚持技术创新与产品迭代,以一站式AI视觉解决方案,精准解决新能源电池生产痛点,保证电池外观缺陷的检出,具有较强的技术优势,包括通过结合深度学习技术,能够灵活应对不同检测场景的需求;通过融合人工智能分类识别模块,有效提高缺陷检测效果;通过全幅面实时动态视频监控,实现监控和检测并行工作;通过标准嵌入式工业设计、标准进口硬件单元,方便随时升级和扩展。
除技术优势外,深眸科技还与英特尔开展了深层次的合作,其重心就是通过搭配英特尔OpenVINO工具套件,实现深度学习模型在CPU平台上的快速部署,加快解决方案的开发,并提供更高效的CPU推理性能,充分释放其AI算力潜能。
目前,深眸科技全新的AI视觉检测方案已经实现了非常出色的检测效果,不仅能够精准实现对电池外观缺陷的识别,检测精度超过98%,还能快速剔除不良品,将出厂产品合格率达到99%,实现0.01%以下的漏检率随着新能源产业的进一步升级,相关新能源电池厂商对于机器视觉的需求日益明确。
未来,随着AI算法的进一步升级,深眸科技将持续增强面对新能源电池新工艺时的应对能力,并进一步开发AI视觉检测系统,以先进的技术和解决方案,实现在更多行业场景的落地及规模化应用
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~